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Diffraction of gravity waves by a barrier reef 

By JOHN W. MILES 
Institute of Geophysics and Planetary Physica, University of Californis, 
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(Received 16 July 1980 and in revised form 6 November 1980) 

The gravity-wave scattering matrix for a barrier reef that separates two different 
depths of water is calculated by an extension of a variational analysis of diffraction by 
a discontinuity in depth (Miles 1967). The resulting transmission coefficient for equal 
depths differs from that obtained by Johnson, Fuchs & Morison (1951), which appears 
to be incorrect. The results are applied to the calculation of resonant amplification of 
incoming swell or tsunamis by a shallow lagoon that is bounded by the reef and a 
vertical inner boundary. The results for this last problem agree closely (exactly for 
equal depths) with those obtained by Tuck ( 1980) through a rather different approach. 

1. Introduction 
I consider here the diffraction of gravity waves by a thin barrier that separates two 

domains of uniform depths h, (x c 0 )  and h, (x > 0 ) ,  h, > h,; see figure 1. The termina- 
tion of the shallower domain by a vertical cliff at x = - d yields a model for the partial 
trapping and amplification of waves between a coastline and a parallel reef (Allison & 
Grassia 1979; Tuck et al. 1980). Perhaps the most important natural problem is that 
of tsunami amplification, for which Klt, c Kh, < 1, where K = u 2 / g  and u is the 
angular frequency. Surf amplification in a shallow lagoon (Kh, < 1)  with deep water 
(Kh,  9 1 )  outside of the reef also is of practical interest. 

The basic analysis follows that for a discontinuity in depth with no projecting 
barrier (Miles 1967; hereinafter referred to as I, followed by the appropriate equation 
or section number). The notation follows that in I, and much of the analytical detail, 
which is essentially similar to that in I, is omitted. The present results reduce to those 
of I in the limit a/h, f 1.  The domain - d c x c 0 may act as a Helmholtz resonator if 
a/h,  < 1 (cf. Miles & Munk 196l),  and the limit a/h,  4 0 is singular (the domains x < 0 
and x > 0 are independent if the top of the barrier is not submerged). 

I begin, in 0 2, by stating the boundary-value problem andintroducing the scattering 
matrix that relates the amplitudes of the incoming and outgoing waves when the 
vertical boundary a t  x = - d is absent. I thcn, in S 3, obtain variational approximations 
to the elements of the scattering matrix. I consider the special case of equal depths in 
$ 4  and find tha t  the transmission coefficient for the barrier differs from that obtained 
by Johnson et al. (1951). Finally, in $5, I impose t'lie boundary condition at  x = - d  
(d  9 h,) and cbtain the resmant frequency of the doininant mode and the correspond- 
ing &. 
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FIQUBE 1. Sketch of barrier-reef model with vertical cliff at a = -d .  

2. The scattering problem 

tional, incompressible flow, me given by 

where u is the angular frequency and 

The linearized boundary conditions are (see figure 1) 

The pd ic l e  velocity and free-surface displacement, on the assumption of irrota- 

(2.1 a, b)  v = Re [e-wVq5(x, y)l, 7 = Re [i(a/g) e-*$(z, O)l,  
is the velocity potential, which satisfies 

VBq5 = 0. (2.2) 

9&+Kq5= 0 (Y =O),  & =  0 (Y = h ) ,  (2.3a, b)  

& = O  ( x = O ,  + a < y c h ) ,  $,=O ( x = - d ,  O < y < h ) ,  (2.4a,b) 

where R = w2/g, and the subscripts x and y signify partial differentiation; (2.36) must 
be replaced by an appropriate finiteness condition for x > 0 in the limit of infinite 
depth (h,-+m). The wymptotic form of the solution at large distances from the dis- 
continuity at z = 0 (at which non-propagated modes are excited) may be posed in the 
form [see 1(2.10)] 

q5 - ( A e - ~ ~ ~ ~ ' + B e ~ ~ ~ ~ ~ ) ~ ( y ) s g n x  (1x1 9 h), (2.6) 

where ~ ( y )  = 2*(h+K-ls inh '~h)4~0~h [ ~ ( h - y ) ]  (2.6) 

and K tanh Kh = fi. (2.7) 
The subscript m = 1 (2) is appended to  h, K ,  A, B, q5 and x in the sequel to signify 
2 < ( > ) O .  

The solution of the scattering problem posed by (2.2), (2.3a, a ) ,  (2.4a) and (2.6) may 
be expressed in terms of the aperture velocity q5z (z = 0,O < y < a) and parallels that 
of I, with the upper limit of integration inI(2.12), 1(2.13), 1(2.17), I(3.4), I(3.6), I(3.9), 
I(3.10) replaced by a (the present problem reduces to that of I for a = hl). The ampli- 
tudes of the incoming (towcLrds 2 = 0) and outgoing (towards 1x1 = m) waves, 
A = {A1, A 3  and B = {B1, B2}, respectively, are related by 

B = (K + is)-' (K - is) A TA, (2.8) 

where (2.9a, b )  

is the scattering matrix, and T is the transmission matrix; see I, $3, for details. It 
follows from (3.1) below that 8,' = fi12. 

The preceding formulation may be extended to oblique incidence as in I. 
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3. Variational approximations 

1(2.6), I(2.6)] 
The elements of the scattering matrix admit the representation [cf. 1(6.2), 1(2.16), 

j" J"um(Y) W, q)un(q)dqdY 
(3.1) 

1 0 0  -= 

'mn 1: xm(Y)un(Y)dYjaxn(q) 0 um(a>dq ' 

where 

$(y, k) = 2+(h- K-lsin%)-) COB [k(h- y)], (3.3) 

ktankh+R = 0 (0 < < k, c ...), (3.4) 

and u1 and 2c0 satisfy the integral equations I(3.9) with hl replaced by a therein; (3.1) 
is invariant with respect to first-order variations of ul(y) and u2(y) about the true 
solutions of this pair of integral equations. 

The aperture functions u1 and u2 are linearly independent if hl + h,; however, the 

where f(y) is an appropriate trial function, may be expected to yield rather accurate 
variational approximations to the Smn (cf. I, $86, 6). Substituting (3.5) into (3.1) and 
proceeding as in I,  $6, we obtain 

where 

and 

(3.7) 

Note that (3.8) represents an additive separation of the contributions of the non- 
propagated modes in z < 0 (m = 1) and z > 0 (m = 2) to X. Substituting (2.9) and 
(3.6) into (2.8) and choosing 

we obtain [cf. 1(6.8)] 
= (Ks/K1)4 (3.9) 

-2AN 1 1 NB- I -ix 
-2A-lN l-NB-iX ' 

(3.10) 

The plane-wave approximation to T, which neglects the non-propagated modes 
(see I, $a), is obtained by choosing 

f = X d Y )  (3.11) 

and neglecting X in (3.10). The corresponding variational approximation retains X. 
The limits Rh,, S. 0 and Kh, $0, Kha f 00 are of special interest (see,third and fourth 
sentences in 8 1). 

Substituting (2.6), (3.2), (3.3) and (3.11) into (3.7)-(3.9) and letting Rhl,,J 0 (the 
long-wave limit), we obtain 

A = N = (h1/h2)4 (3.12 a) 

and x = (Rhl)* Wa1) + Y(a*)) (am = a/hm) (3.12 b)  
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F~ana~: 2. The parametem 9 ( a )  (-), Y, (a )  (- * * -) and 9, (a)  (- --) 88 calculated from (3.13), 
(3.18a) and (4.9). The curvw~ for 9, and 9, am indistinguishable,within the accuracy of the 
plot, for a c 0.0. Also plotted is the approximation (3.18b) (---I, which is indistinguishable 
from 9, and 9, for a < 0.2. 

within 1 + O{R(h2 - h,)} and 1 + O(Rh,), respectively, where 
m 

n= 1 
Y(a)  = 2a-a (nn)-3sine(nna). (3.13) 

The dimensionless parameter 9 ( a )  is plotted in figure 2. It can be shown, by differenti- 
ating aa9(a) twice, summing the resulting series, and re-integrating, that 

(3.14a) 

= (2/n)  (-In 2na+Q) + ( ~ / 1 8 )  a2+0(a4) (aJ.0) (3.14 b )  

and ~ ( a )  =(2/R)(i--a)2{-1n2n(1-~)+3}+0{(i-a)4} (a? 1). ( 3 .14~)  

The counterparts of (3.12) in the joint limit Khl J. 0,  Kh, f co (shallow/deep water 
in z 5 0 )  are [of. I, $6; $, is given by I(2.9b) in the limit Rh,? co, and the summation 
over k for m = 2 in (3.8) then must be replaced by integration from k = 0 to k = a] 

I\ (Rh,)), N 2*(Rhi)', x (Rh , )* [Y(a i )+ (2 /n ) ( - In2Ra-y+~} ] ,  

(3.15a, b, c) 
where y = 0.5772 ... is Euler's constant. 
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The approximation (3.11) fails to model the singularity at the edge of the barrier. 
An approximation that does model this singularity in the limit a$  0 is obtained by 
considering potential flow through the aperture IyI < a in the plane x = 0, which 

leads to f = (aa-yZ)-* =fo(y). (3.16) 

The approximation ( 3 . 1 2 ~ )  remains unchanged in the limit Kh1,aJ 0, whilst (3.12b) is 
replaced by (3.17) x = (HA,)* {%(a,) + %(.d (Xh2 c 0)s 
where 

a, 

n=l 
90(a) = (2/7r) n-lJi(n7ra) 

= -(2/7r)ln(nu/2)+O(a~) (a40). 

( 3 . 1 8 ~ )  

(3.18 b) 

The approximations (3.15a, b) also remain unchanged in the joint limit Hh,$ 0, 
Kh, t coy whilst (3 .16~)  is replaced by 

(3.19) 

The dimensionless paameter P0(a) is plotted in figure 2. It is similar to, but smaller 
than, 9 ( a )  for a < 0.8 (9- Yo ic 0.072 for a J. 0);  it Men3 qualitatively therefrom for 
a > 0-8. The variational principle (see $4) implies that (3.17) is more accurate than 
(3.12b) for a, = a,$ 0 and suggests that (3.17)/(3.19) is more accurate than (3.12b)l 
( 3 . 1 5 ~ )  for a, < al$ 0, whilst the converse is true for a,? 1; physical considerations 
imply X = 0 for a, = a, = 1, which condition is satisfied by (3.12b) but not by (3.17). 

An ad hoc approximation that is within 1 yo of (3.17) for 0 < % < 0-6, yields X = 0 
for a, = = I, and appears to be superior (icl superior if a, = a) to (3.12b) for 
0 < a, < 1 is obtained by replacing Po in (3.17) by Y,, m given by (4.9) below. Simi- 
larly, Yo may be replaced by 9, in (3.19). 

X N (ghJ* [%(a,) - (2/n) {In (Ra/2) + 7}I (G = 00)- 

4. Equaldepths 
Letting h, = h2 3 hin 592and 3, weobtain N = h = 1, 

s,, = 8,, = 8,, = 8,, K / X  

and 

where the summation is over the positive roots of (3.4). The variational form (4.2) is 
an absolute minimum with respect to first-order variations of u about the true solution 
to the integral equation I(3.9) (after dropping subscripts and replacing h by a therein). 
Setting K, = K, = K ,  A ,  = 0, B, = RA,, and B, = -FA, in (2.8) and invoking (3.10) 

(4.3) 
and (4.1), we obtain 

for the transmission and reflexion coefficients of the barrier. 
Letting u = Cx and substituting x and @ from (2.6) and (3.3), we obtain the varia- 

tional approximation 

T = I - R  = (l-*iX)-l 

8/9{ 1 + (2/9)-l sinh 2/9} 
[a + (2/3)-1 {sinh 2p - sinh 2/?( 1 - a)}p X S  
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where a = a / h ,  p =  Kh, R =  kh. (4.5a, b, c) 

Letting B.10 in (4.4) and (2.7), we obtain 

x + 2(Kh)i Y ( a )  (Kh J. O), (4.6) 

where 9 ( a )  is given by (3.13). 
The approximation (4.6) may be improved by replacing 9 ( a )  by Yo(.) for 0 < a 

< 0.8. This corresponds to choosing the trial function u = Cfo in (4.2). Then, since the 
variational approximation exceeds the exact result for any u other than the exact 
solution and since Yo < 9 in 0 < a < 0.8, the trial function Cfo is superior to Cx in 
that range. A more accurate result may be obtained by introducing the change of 
variable 

cos (nylh) = cos2 (na/2) + sin2 (na/2) cos 8 (4.7) 

and the trial function 
u(y) = C cosec 8sin (nylh), 

which is suggested by a similar treatment of the problem of acoustic diffraction by an 
aperture in a rectangular wave guide (Miles 1946). Substituting (4.8) into (4.2) and 
letting Kh J. 0, we obtain [see Miles (1946) for analytical details] X in the form (4.6) 
with 9' replaced by 

Yl, which is plotted in figure 2, is smaller than Yo (so that the corresponding approx- 
imation to X is superior to that based on Yo) for 0 < a 4 1, but the difference is less 
than 1 yo for a < 0.5, and Yo - 9': $ 0  as a J. 0. 

Yl(a) = (2/n) In cosec (na/2). (4.9) 

Letting Pf co and replacing the summation by integration in (4.4), we obtain 

x - X,(Ka) ( K h t  4, (4.10) 

( 4 . 1 1 ~ )  

= (nsinhZx)-1{y+ln2x-$e-~Ei(2x) +$ebE1(2x)} (4.11 b )  

= (277r) ($ - y - In 2x) + O(x21n 2) (x 4 O), (4 .11~)  

and Ei and El are exponential integrals (Abramowitz & Stegun 1964); see figure 3. 

above/below the top of the barrier is totally transmitted/reflected, obtain 
Johnson et al. (1951), starting from the hypothesis that the incident wave energy 

(4.12) 

Their limiting results, 

JTI-ta* (KhJ.0)  and ITI+(l-e-2ga)& (Khfco) ,  (4.13a, b) 

differ substantially from those obtained through the substitution of (4.6) and (4.10) 
into (4.3). It therefore appears that their hypothesis is untenable. 
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FIGURE 3. The parameter X,(Ka),  aa given by (4.10) and (4.11). 

5. Shelf resonance 
The boundary condition (2.4b) may be satisfied for d/h,  p 1 by choosing (cf. I, $7) 

A, = +Cl ecd, B, = +Cl e-*d, S = K ,  d. (5.la, b, c) 

Substituting (5.1) into (2.8) and solving for B2/A2 and CJA,, we obtain the reflexion 

and the free-surface-displacement transmission coefficient 

(5.3) 

where x12  = x1(0)/x2(0), I SI = 811 8 2 2  - R 2 .  (5.4a, b) 

Resonance may be defined rn that condition for which r = +lr (or, more generally, 
r = ilr + nlr, n = 0, 1, 2, . . . ), which implies 

T E - C l -  XlW)  - - 2K2 8 1 2  Xl2 

Xs(0) K2(8gllCOS&-KlSin6) -i(K1822Sh16- Is1 COSb)’ 

6+tan-’X = +lr (X = ~ , / 8 ~ , ) .  (5.5) 

It follows from (5.5) that the effect of the non-propagated modes is equivalent to an 
incremental shelf length of 

d, = K i l  tan-lx + 1/8,, (Kh, + 0). (5.6) 
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The corresponding Q (ratio of the resonant frequency to the half-power bandwidth of 
the resonance curve) is 

Q = 4~2{d(S5 +GI + Bii}/fJ;z- (5.7)t 

The approximation (3.5), followed by the substitution of (3.6) and (3.9) into (5.3) 
and (5.7), yields 

T = 2 h N ( ~ o s S - X s i n S - i N ~ ) - ~ ~ , ,  (5 .8)  

and Q = &N-2{X + S( 1 + X2))-’. (5.9) 

The limiting results for Kh,,, $ 0  may be obtained by substituting ( 3 . 1 2 ~ )  and either 
(3.12b) or (3.17) into (5.6), (5.8) and (5.9) and similarly for Kh, J. 0 and Kh,? 00, using 
(3.15u, b) andeither ( 3 . 1 5 ~ )  or (3.19). If h, = h,, h = N = 1, and X should be calculated 
from (4.6) and (4.9). 

6. Comparison with Tuck (1980) 
After completing the preceding work, I learned of Tuck’s (1980) work on the 

problem of shelf resonance. Tuck assumes Kh, < 1 and either Kh, < 1 or Kh, = co and 
matches outer solutions, of the form (2.5) above, in x < 0 and x > 0 to an inner 
solution in the neighbourhood of the barrier, where he replaces the free surface by a 
rigid boundary, invokes potential theory, and solves the reduced boundary-value 
problem by conformal mapping. His results imply 

X = 2C(Kh1)g (Kh, < I ) ,  (6.1) 

(6.2) 

where C is his ‘blockage coefficient ’ and is given by his (A la), and 

x = (2/n) ( ~ h , ) *  (C,-In kh, -y)  (Kh, < I ,  Kh, = co), 

where C, is given by his (A 24). The approximation (6.1) is to be compared with either 
(3.12b) or (3.17), whilst (6.2) is to be compared witheither ( 3 . 1 5 ~ )  or (3.19); (6.1)/(6.2) 
is equivalent to (3.17)/(3.19) in the (narrow gap) limit a,$ 0. 

If h, = h, = h, Tuck’s blockage coefficient may be reduced to [after setting p = 1 
and B = sec tna in his (A 14)] C = 9,(a), and (6.1) then is identical with the approx- 
imation implied by (4.6) and (4.9). 

It seems likely that Tuck’s solution for h, p h, models the singularity at the edge of 
the barrier better than does either (3.11) or (3.16), and hence that (6.1) is slightly 
superior to either (3.12b) or ( 3 . 1 5 ~ ) .  On the other hand, Tuck’s solution is valid only 
for Kh, < 1 and either Kh, < 1 or Kk, 9 1 (in particular, his replacement of the free 
surface by a rigid boundary appears to be appropriate only for Kh, < I ) ,  whereas the 
variational approximations in $93 and 4 above are valid for arbitrary Khl , ,  (cf. I). 

This work was carried out during my tenure as an Overseas Fellow of Churchill 
College and a visitor in the Department of Applied Mathematics and Theoretical 
Physics of the University of Cambridge. It was partially supported by the Physical 
Oceanography Division, National Science Foundation (NSF Grant OCE77-24005) 
and by a contract with the Office of Naval Research. 

t This is actually the Q for a rosonance curve of aniplitude us. K, on the aasuniption that the 
variation of S,, with K~ over the resonant peak is negligible. It corresponds to the usual Q if 
Kk, Q 1. 
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